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Abstract

A two-fluid model of turbulent, adiabatic bubbly flow was implemented in the computational fluid
dynamics (CFD) CFX4.2 program and validated. Turbulence in the dispersed (bubble) phase was ne-
glected. Liquid turbulence was modeled through a two-phase extension of the single-phase standard k—e
model. Conservation equations of turbulent scales contain single-phase and interfacial terms. A closure for
the interfacial turbulence terms was proposed based on the assumption of low-bubble inertia and neglecting
surface tension. The interfacial turbulence terms account for additional pseudoturbulence in liquid created
by bubble-induced mixing. The proposed turbulence model contained the single empirical constant in the
modeled dissipation rate balance. The model was implemented in the CFX4.2 commercial CFD solver.
Comparing numerical predictions to the experimental data the value of the model constant was estimated.
Model predictions were compared to other bubbly flows to prove the universality of the model constant.
The comparison showed that the constant has a certain generality. A new, two-phase logarithmic wall law
was also implemented and validated. The derivation of the new law was based on an assumption of the
additional eddy diffusivity due to the bubble-induced stirring in the boundary layer. An improved wall
friction prediction was achieved with the new wall law over conventional single-phase law. The improve-
ment was especially noticeable for the low-liquid flow rates when bubble-induced pseudoturbulence plays a
significant role. The ability of the model to account for bubble size effect was also studied. © 2001 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Bubbly flows consist of gas bubbles (dispersed phase) within a carrier liquid (continuous
phase). Examples of industrial bubbly flows include all types of boiling heat transfer, bubble
stirred chemical reactors etc. Knowledge of the characteristics of bubbly flows is important in the
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design of multi-fluid systems. As the computer power dramatically increases each year, it is de-
sirable to employ advanced multi-dimensional models to calculate bubbly flows more precisely
through methods of computational fluid dynamics (CFD). These models should be able to ac-
count for such effects as turbulence, strong interaction between phases and multi-dimensionality,
which are the general attributes of the most of bubbly flows. The models should also rely on the
empirical data to the least possible extent.

Several two-fluid CFD models of bubbly turbulent flows were reported in the literature. As an
example, Lopez de Bertodano (1992) used two-phase extension of the algebraic stress model
(ASM) to model turbulence effects in the liquid phase. The turbulence scale equations were de-
rived on the presumption that the total liquid turbulence is a sum of shear and bubble-induced
components. Total liquid eddy diffusivity was modified by an addition of the bubble-induced eddy
diffusivity introduced by Sato et al. (1981). A comparison of this model’s prediction with ex-
perimental data on bubbly flows, in a vertical duct, gave encouraging results. Morel (1997) used a
two-phase extension of k—¢ model to describe liquid turbulence. In his model, bubble-induced
modification to liquid turbulence was accounted for by an additional production term in the
liquid turbulent energy balance. This term was proportional to the work of the interfacial force
per unit of time. In the dissipation rate balance, the rate of destruction of bubble-induced tur-
bulence was modeled by multiplying the bubble production term by a characteristic frequency.
This frequency was calculated from the turbulence dissipation rate and the bubble diameter, based
on the dimensional analysis. All models described above relied on the single-phase wall function
approach as a smooth wall boundary condition. This is, obviously, in a contradiction to the
experimental results of Marié et al. (1997), Nakoryakov et al. (1981, 1996) and Sato et al. (1981).
Their experiments have shown that liquid velocity obeys the logarithmic law. However, the wall
law constants become functions of the flow parameters, if boundary layer bubble concentration
was significant.

The present research is intended as a continuation of the previous efforts to create a practical
model of turbulent bubbly flows. First, two-fluid model of adiabatic, incompressible bubbly flows
is described with an emphasis on the all-important interfacial forces. Second, a new model for
liquid turbulence is proposed. Third, a new logarithmic wall law for bubbly boundary layer
proposed by Troshko and Hassan (2001) is used. Fourth, results of the model validation are
discussed and conclusions are drawn.

2. Governing equations

Drew (1983) and Kataoka (1986) used concept of phase indicator function to derive the mi-
croscopic conservation equations governing adiabatic incompressible two-phase flows. The phase
indicator function was defined as

Ou(x, 1) = { 1 if(x,?) is occupied by phase F, "

0 otherwise,

where x is the space vector, ¢ is time. Subscript & refers to phase, where £ = C for continuous
phase (liquid) or £ = D for dispersed phase (bubbles). The obtained equations contained single-
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phase terms and interfacial terms identified by the presence of indicator function gradient V.
This gradient is zero everywhere except at the interface where it has a singular value

VO, = nd(x — Xi, 1). (2)

In Eq. (2), n; is the unity vector normal to the interface and pointing outward in respect to the
phase k, ¢ is the delta (Dirac) function and subscript i refers to the interface. The microscopic
equations become singular at the interface, which is a direct consequence of the zero interface
thickness assumption introduced in (1). The governing equations were ensemble averaged to
remove such singularity. A general microscopic transported property ¢ was decomposed into
average and fluctuating part (Kataoka, 1986)

b(x,1) = () + ¢} (3)
where the phasic ensemble average is defined as
(D) = (0kd) /o (4)

In Eq. (4), () is the operator of ensemble average and (6;) = o is the void fraction. Assuming
both phases adiabatic and the fluids to be incompressible and neglecting surface tension, the
following equations were obtained:

Mass
0
P LV (o Uy) = 0. )
ot
Momentum
o(p, o U
W) |G (0 0,0) = ¥R+ T (T, £ T

+ M, + (pi — P)Voy + proug, (6)

where U;, P, T;, g are the mean (ensemble averaged) velocity, pressure, viscous stress and
gravitational acceleration, respectively. Interfacial pressure is defined as p, = (pV6,) - Voy |Voy |
(Drew, 1983). Eq. (6) contains unknown terms such as M; (interfacial force density), p; — P,
(interfacial pressure difference), T{* (Reynolds turbulent stress). All the unknown terms in the
above equation are a result of the inevitable loss of information about the microscopic flow
structure after the averaging process. Closure of these terms remains a challenging problem. In the
past, considerable efforts were dedicated to the closure of the first two interfacial terms. Although
still far from being widely accepted, the model presented below is the most up to date model in the
case of dispersed bubbly flow.

2.1. Interfacial force density

It was assumed that there is no mass transfer between phases and the surface tension force is
not important. Therefore, by Newton’s law, interface force densities acting on each phase differ in
sign only

Mc = —Mp,. (7)
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Traditionally, the interfacial force density is decomposed into several components:

Mc = F&™ + F& + Fe' + e+ Fe. (8)
Each of these components is associated with particular physical mechanism of the interfacial
momentum transfer. A brief description of each interfacial force component is presented below.

The origin of the drag force is due to the resistance experienced by a body moving in the liquid.
Viscous stress creates skin drag and pressure distribution around the moving body creates form

drag. The later mechanism is due to inertia and becomes significant as the particle Reynolds
number

d|U;|

Ve

©)

becomes larger. In Eq. (9), U, = Up — Uc is the slip velocity, d is the bubble equivalent diameter
and vc is the liquid kinematic viscosity. The drag force density is written in the following form:

ra 3C
FCC1 .= 4 f“DpC‘Ur‘Ura (10>

Reb =

where Cy is the drag coefficient taking into account the character of the flow around the bubble.
Hydrodynamic interaction of the bubble with other particles also influences the drag coefficient.
This phenomenon can be taken into account (Ishii and Zuber, 1979).

Virtual mass force arises when there exists a relative acceleration between two phases

DcUp  DpUc
Dt Dt )’

(11)

where D, /Dt is the material time derivative of the phase k. For the potential flow around single
sphere, constant Cy,, is equal to 0.5. If the hydrodynamic interaction between bubbles is signifi-
cant, then C,, becomes a function of ap (Drew, 1983).

Lift force arises from the interaction between bubble and the shear stress in liquid. The general
expression for the lift force density is

F' = appcGU; x V x Uc. (12)

The sign of this force depends on the orientation of slip velocity with respect to the gravity vector.
For example, in upward pipe flows this force pushes bubbles towards the wall. When flow is
downward, it pushes bubbles to the pipe center. The value of the lift coefficient C; ranges from
0.01 for the laminar flow to 0.5 for the inviscid flow around the sphere. Wang et al. (1987) found
that coefficient Cj, in general, depends on the flow parameters. Lopez de Bertodano (1992) rec-
ommended C; = 0.1 for bubbly flows in vertical pipes. Recently, Moraga et al. (1999) correlated C
as a function of bubble and local shear Reynolds numbers. Moraga et al. also showed that C; may
be negative for large bubbles in high-shear flows.

The origin of the wall force is due to the fact that liquid flow rate between bubble and the wall is
lower than between the bubble and the outer flow. This results in a hydrodynamic pressure dif-
ference driving bubble away from the wall. This force density is approximated as

Fém = o(DC\/mpC<

U, d
F\é/all _ (xDpCd|| max (O’ Cwl + CW2y>IlW, (13)

w
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where n,, is the outward unit vector perpendicular to the wall and y, is the distance from the wall
to the bubble. Constants Cy,; and Cy, determine the magnitude and the effective action distance,
which is equal to dCy,/Cyy.

The turbulent dispersion force, derived by Lopez de Bertodano (1992), is based on the analogy
with molecular movement. It approximates a turbulent diffusion of the bubbles by the liquid
eddies. It is formulated as

ng = —CtdekCVocc, (14)

where k¢ is the liquid turbulent kinetic energy per unit of mass. Lopez de Bertodano (1992)
suggested the value of coefficient Cy to be of order 0.1. Although Lopez de Bertodano did not
justify this choice, it seems that it was chosen based on the similarity with the eddy diffusivity
constant C, = 0.09 in the single-phase k—¢ model.

2.2. Interfacial pressure difference

Lamb (1932) considered the potential flow around single sphere. His result for the interfacial
pressure difference is

(pi—Pc) =— ch|Ur\2O€C, (15)

where C, = 0.25. Lance and Bataille (1991) found that 0.6 < C, <1.7 for the oblate spheroid
shaped bubbles moving along helical trajectories. Lopez de Bertodano (1992) recommended
Cp, = 1.0 for bubbly flows in pipes. Drew (1983) argued that under the assumption of incom-
pressibility of both phases and without bubble expansion/contraction there exists a microscopic
instantaneous pressure equilibrium, i.e., C, = 0. Furthermore, Drew (1983) also pointed out, that
expression (15) describes the form drag effects, which was already taken into account by the drag
force coefficient in (10). Thus, C, = 0 was used in our current model. Note, that the microscopic
pressure equilibrium assumption together with the neglect of the surface tension leads to the single
pressure field shared by both phases: Pc = Pp.

It must be pointed out, that closure coefficients Cy, Cym, Ci, Cy1, Cyn and Cyy are rather flow
dependent. Even for simple bubbly flows, there is a lack of knowledge about their values except,
perhaps, drag and virtual mass coefficients. The reason is that it is very difficult to conduct
separate effect experiments to estimate the value of these coefficients with a good accuracy.

3. Model of turbulence

In the previous chapter, constitutive equations were written for the interfacial momentum terms
for the case of incompressible, adiabatic bubbly flows. Despite considerable efforts, accurate
modeling of the interfacial force density remains an open question even for simple dispersed
bubbly flows. Even less is known about two-phase turbulent Reynolds stress Tffe in (6), which is
defined as

T# = —Z—l’:<0kU§(U§C>, (16)

where fluctuation velocity vector Uj is defined in (3).
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Experimental evidence (Serizawa et al., 1975) suggests that
TRe
Pc

e
where || || is some suitably defined norm. Since for the most of bubbly flows, p-/pp density ratio is
high, the magnitude of the dispersed phase (bubbles) Reynolds stress is much smaller than that in
the continuous phase (liquid), i.e.

|5 . (18)

< ||T¢

It is commonly assumed that the concept of eddy diffusivity can be extended to the two-phase
flows

T = p, <v; (vuk + (VU)' — gI(V : Uk)> - %Ikk>, (19)

3 3
where v} is the eddy diffusivity and superscript T denotes transposition. However, Wang et al.
(1987) experimentally found that for some downward pipe bubbly flows, liquid Reynolds stress is
not parallel to the mean strain rate tensor. Nevertheless, as a first approximation, Eq. (19) can be
utilized. Then, the problem of eddy diffusivity modeling would arise. Again, single-phase k—¢
model can be used as a first approximation

2

k;
=G, (20

where turbulent kinetic energy per unit of mass (or simply turbulent energy) is defined as

ki :2}%<0kU;-U;>. (21)

Turbulence dissipation rate g per unit of mass (or simply dissipation rate) is defined as

. (0:(v0;) : ;) o)

)
kP

where the fluctuating part of viscous stress T} is determined by (3). Assuming the carrier liquid
and gas are Newtonian fluids, Eq. (22) becomes

o = & <<0kvu;( L VU, ) + <9kvug( : (vu;)T>>. (23)

Ok

Single-phase equations (19) and (20) take into account interfacial effects implicitly. These effects
are contained within values of &; and ¢;. Thus, the transport equations for these turbulent scales
must have interfacial effects explicitly. Kataoka and Serizawa (1989), Kashiwa and Gore (1991)
and Troshko (2000) derived the exact balance equation for k; using the same approach as was
used to derive Egs. (5) and (6). Under assumptions stated above, the turbulence balance equation
can be cast as
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O(proucks)

o + V- (0o Uky) = o T (VUy)

Pk<9kU2‘UH2>

v 5

+ (0:UF) — (0,U - T))

— prouer + (Uy - (Ty; — 1B)) - (VO,)). (24)

In Eq. (24), the first term on the right-hand side is the single-phase production of turbulence by
the mean strain rate. The second term is the diffusion by velocity fluctuations, pressure fluctua-
tions and molecular viscosity, respectively. Third term is the dissipation. The last term describes
interfacial transfer of turbulence. Since the gradient of the phase indicator function is non-zero at
the interface, all fluctuation components in the interfacial term are defined as

b = di(x, 1) — (). (25)
Interfacial term in (24) can be identically rewritten as (Kataoka and Serizawa, 1989; Troshko, 2000):

(Ug+ (T = 18G) - (V0)) = (o — p)T— 8)- V0, - U+ ((p — POT+ ) : (UV0),  (26)

where p and t are the microscopic pressure and viscous stress. The first term on the right-hand side
of (26) is an unknown correlation between instant value of the interfacial force density (Drew,
1983) ((p — p)I — T) - VO, and velocity fluctuation. The second term on the right-hand side of
(26) contains the unknown correlation between velocity fluctuation and dynamics of the interface
expressed by the gradient of the indicator function. High-density ratio common to the most of
bubbly flows and inequality (18) allows receiving a remarkably simple closure for the first term in
(26). Assuming physically meaningful norm for Reynolds stress in (18) as

[T = puk (27)
inequality (18) becomes
pcke > ppkp. (28)

The conservation equation for the total turbulent kinetic energy of two-phase system is obtained
by a summation of Eq. (24) for each phase. Due to inequality (28), all single-phase terms weighted
by the gas density are negligible to the order O(pp/pc). Thus, the total mixture turbulent kinetic
energy balance becomes (Kataoka and Serizawa, 1989)

O(pcocke)

ot +V- (pCOC(chkc) = OCcTIée : (VUc)

(0cUL|UL[)

—-V- 5

HcU/ P > <0CU/C . T,C> — Pclcéc

+ ) (((p=p)1=T)-VO;- Uy

k=C,D

+ (7 — POY+Ty) : (U, VO,). (29)

k=C.D
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Using Egs. (25) and (7) the first sum in the last line of Eq. (29) becomes
> (((p=p)1=T) V- Up) = Us - M. (30)

k=C.D

A remarkable feature about (30) is that it is exact to the order O(pp/pc) and does not require any
further modeling. Thus, correlation between velocity fluctuation at the interface and interfacial
force density for the two-phase mixture is exactly equal to the work of interfacial force density per
unit time. Since typical bubbly flow is drag dominated, Eq. (30) becomes

Ur-MC:§ﬁaDpC\UrP > 0. (31)
4 d
Physically it is associated with the pseudoturbulence generated by the chaotic liquid displacement
due to the bubbles. Small portion of energy defined in (31) contributes to the rotational part of
liquid turbulence due to the vorticity generated by bubble wakes.

Remaining term to be modeled is the last sum of the right-hand side of Eq. (29). Kataoka and
Serizawa (1989) assumed that fluctuating motion of interface is isotropic, i.e., (U,V0;) =0.
Further, interfacial pressure difference was neglected in the momentum equation. Thus, last in-
terfacial term on the right-hand side of (29) was neglected.

Taking into account Eq. (31), the modeled form of the turbulent energy balance (29) becomes

O(peock
% + V . (pCOC(;Uckc) = OCCTIée : (VUc) — V
Pt 3Gy
' (p,(ng ch> — pclcec + 2 7OCDPC|Ur|3a (32)

where turbulent energy Prandtl number PXF = 1.0 in standard k—¢ model (Launder and Spalding,
1974).

Turbulent kinetic energy balance (32) contains unknown dissipation rate defined in (23).
Assuming isotropic turbulence, Eq. (23) reduces to

b = %(wkvu; L VUL)). (33)
k

Thus, a separate transport equation for the liquid dissipation rate defined in (33) is required. An
exact transport equation for the single-phase dissipation rate contains third-order correlations,
which must be modeled. In the k—¢ approach, the modeled balance for ¢ is based on the Kol-
mogorov’s hypothesis that the time scale of single-phase turbulence destruction is determined by
the time scale of the smallest eddies responsible for dissipation. Thus, production and dissipation
rates of dissipation rate are assumed proportional to the turbulence production and dissipation
rates multiplied by the smallest eddy frequency scale w. Dimensional analysis results in (Launder
and Spalding, 1974)

€
w=—. 34
: (34)
Of course, such approach is nothing more but an exercise in scaling analysis. Therefore, the
modeled form of the dissipation rate balance has very little in common with the original equation.

Therefore, a consistent way to model interfacial terms in turbulence dissipation balance is to
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adopt the same approach as it was done in the single-phase model. The interfacial term in dis-
sipation rate equation is assumed to be proportional to the bubble-induced production term (31)
multiplied by the characteristic frequency of bubble-induced pseudoturbulence destruction. An-
other fundamental question is whether single-phase turbulence destruction frequency defined in
Eq. (34) is the characteristic frequency of bubble-induced turbulence destruction. Lopez de
Bertodano (1992) considered decay of homogeneous two-phase turbulence. He found that if the
single-phase frequency (34) were assumed as the time scale of bubble pseudoturbulence de-
struction, then the turbulence decay would depend on the initial dissipation rate. Such depen-
dency is unphysical. A modified model of two-phase turbulence was proposed. Turbulence in the
liquid phase was assumed to be a sum of shear and bubble-induced turbulence fields. Such su-
perposition is valid for low-void fraction flows (Lance and Bataille, 1991). It can be viewed only as
a first approximation of generally non-linear interaction. Based on the results of bubble-induced
pseudoturbulence in the potential flow, Lopez de Bertodano (1992) proposed a new expression for
the bubble pseudoturbulence dissipation frequency

2Cumd \
= ) 35
= (sctr) )
Eq. (35) states that the characteristic time scale of bubble pseudoturbulence destruction is de-
termined by the bubble residence time rather than smallest eddy time scale from (34). For typical
bubbly flow w;, > w, i.e., bubble pseudoturbulence decays much faster than shear-induced tur-
bulence. Introduction of the second dissipation time scale leads to the correct asymptotic behavior

of the model for homogeneous turbulence decay. Thus, an appropriate modeled form of the
dissipation rate balance would be

O(pcoce v
% + V- (pCO((jUCsc) = CL)(Cl Otche : (VUc) — CzpCOCC((Ic) -V <;SD]§ v8C>
3C
+ wa3Z 7dOCDpC|Ur|3a (36)

where C; = 1.44, C; = 1.92, P'PR = 1.272 from the standard k—& model (Launder and Spalding,
1974) and C; is a new unknown model constant.

Turbulent scalar balance equations (32) and (36) explicitly contain interfacial terms. In the
single-phase limit, they correctly approach single-phase k—¢ equations. The proposed model has
the single empirical constant C;. This constant is expected to be universal for incompressible
turbulent adiabatic bubbly flows. Such universality will be assessed later by comparison of CFD
predictions with experiment.

4. Wall boundary conditions

The single-phase k—¢ turbulence model relies on the wall function (Launder and Spalding, 1974)
approach as a wall boundary condition for high-Re number flows. Wall function is widely used in
practical calculations because it avoids very fine grids needed to resolve turbulent boundary layer.
It also seems attractive to utilize wall function in the two-phase turbulence model. The key
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question is whether the continuous phase average velocity obeys the log law. Recent experiments
give a positive answer. However, presence of bubbles in the boundary layer introduces corrections
into the log law. Marié et al. (1997), Nakoryakov et al. (1981, 1996), and Sato et al. (1981) in-
vestigated the boundary layer of upward and downward turbulent air—-water bubbly flows. It was
found that the two-phase boundary layer has the same structure as its single-phase counterpart. It
consists of viscous sublayer, log layer and outer flow region. Typical upward flow void fraction
profile featured peak in the log layer. Liquid mean velocity profile in the log layer (y, = 30-200)
was found to obey the logarithmic law

1
Us =75 In(y.) + B, (37)

where U, = Uc/U]" is the normalized liquid tangential velocity, y, = yUI" /vc is the normalized
wall normal distance, UT? is the two-phase frictional velocity defined as U = (¢I?/p.)'"%, <P is
the two-phase wall shear stress exerted on liquid, x'¥ and B™ are the two-phase Von Karman and
additive constants, respectively. These constants were found functions of the flow parameters
when bubbles were present in the boundary layer. Log law constants retained their single-phase
values BSF(=~ 5.45) and x5P(= 0.419) in bubbly flows with few or no bubbles in the boundary
layer. Such situation was typical for the downward flows where lift force drove bubbles from the
boundary layer.

Troshko and Hassan (2001) proposed a new logarithmic wall law for the turbulent bubbly
boundary layer. They assumed that Couette type boundary layer assumptions are valid for the
bubbly boundary layer as well. In this case, the momentum equation (6) reduces to

oUc 2
O(CVEa—y = UVIP y (38)

where y is wall normal coordinate and Uc is tangential velocity. The main assumption was that
liquid eddy diffusivity is a sum of the shear-induced component given by Von Karman mixing
length hypothesis and the bubble-induced component. Bubble-induced eddy diffusivity was as-
sumed to be a product of local slip velocity and wall normal distance as the mixing velocity scale
and the length scale, respectively. An empirical function accounting for non-linearity of shear and
bubble-induced turbulence interaction was introduced. The result was the logarithmic law ex-
pressed by (37), where

KTP — KSPﬁ—l’ (39)
B =) (p" = 1) —In(p)/x>. (40)
In Egs. (39) and (40), a two-phase correction parameter f is determined by
1 0max | Ur | \ ]
ﬁ: |:(1_O‘mdx)<1+leT|TP|>:| ’ (41)

where »? = 11 is the viscous sublayer thickness and oyma, = max#(ap|12 < y, < 300) is the max-
imum void fraction in the boundary layer. Physically, o, is related to the probability of bubble
presence. We deduced the empirical non-linearity function r; = 4.9453¢~#66!0s" (UTP is in m/s)
from the experimental data of Marié et al. (1997).
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Based on Egs. (37) and (38) and assumption of turbulence equilibrium in the bubbly boundary
layer, the following boundary conditions were derived for the turbulent scales (Troshko and
Hassan, 2001):

U
kc = ——=, 42
c e (42)
ﬁUTP3 Uty

Ec = KSPy = —KTPy . (43)

The boundary condition expressed by (43) differs from its single-phase counterpart. The difference
is that the two-phase dissipation time scale is reciprocal to f, i.e., it is determined by not only
velocity scale U and length scale y, but also two-phase parameters contained within f.

5. Numerical solution technique

The mathematical model developed above consists of continuity equation (5), momentum
equation (6), turbulent energy balance (32) and dissipation rate balance (36). These equations are
complimented by the wall boundary conditions expressed by Eqgs. (37)-(43) and total volume
conservation oc + ap = 1. The mathematical complexity of the model warrants numerical solu-
tion as the only practical option. The CFX4.2 program was used for the numerical integration.

CFX4.2 (AEA Technology, 1997) is a commercial suit of CFD software with multi-phase ca-
pabilities. Computational grid is based on the unstructured set of blocks each containing structured
grid. The structured grid within each block is generated using general curvilinear coordinates
ensuring accurate representation of the flow boundaries. Discretization of the partial differential
equations is based on the conservative finite volume method (FVM). Non-staggered grid is em-
ployed where all primitive variables are stored in the geometrical centers of control volumes. The
program is able to handle all non-drag interfacial forces. The non-drag force coefficients can be
supplied by the user. The drag coefficient was calculated in the following way. First, three drag
coefficients are calculated based on the various flow regimes. These regimes and corresponding
drag coefficient expressions are shown in Table 1. In this table, Eotvos number is a dimensionless
ratio between buoyancy and surface tension force expressed by the surface tension coefficient o

_ lgl(oe — p)d”
o)

Eo (44)

All drag coefficients could be modified to account for the bubble concentration effect according to
Ishii and Zuber (1979). Then, an appropriate drag coefficient is chosen based on the following

Table 1

Drag coefficient regimes
Drag regime Drag coefficient
Viscous, 0 < Rep, < 500 — 1000 CY = 24(1 + 0.1Re)™) /Rey,
Inertial, 500 — 1000 < Re, < 10° Ci = 2Eo0"?/3

Spherical cap (large bubbles) Ci=8/3
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criterion. The viscous regime is adopted if it is greater than the inertial drag. Otherwise, it is a
minimum of the inertial and the spherical cap drag coefficients (AEA Technology, 1997). Two-
phase version of SIMPLEC algorithm (AEA Technology, 1997) was used for pressure—velocity
coupling. Discretized momentum equations were solved by the Stone’s method, turbulent scalars
by the line underelaxation method and pressure by the algebraic multi-grid method (AEA
Technology, 1997).

The model was implemented in CFX4.2 program via user defined FORTRAN subroutines.
Interfacial terms in (32) and (36) were added to the discretized turbulence equations with user-
defined constant C;. Another routine was used to implement the new wall law (37)—(42). Due to
the limitation on the user introduced modifications, the two-phase boundary condition for dis-
sipation rate (43) could not be implemented. This implies that the boundary condition (43) was
implemented with f = 1. This led to a lower calculated turbulent energy. However, as it is indi-
cated in (42) U « v/kc, thus the effect of such inconsistency should not affect friction velocity.
Nevertheless, a correction coefficient C, was introduced in calculation of shear stress to account
for this deficiency. Since wall friction is proportional to the turbulence level in the boundary layer,
it is expected that C, > 1.

Total numerical error arises from several sources (Ferziger, 1993), discretization error, iteration
non-convergence error, and far boundary error. Discretization error can be estimated from the
grid refinement studies. This study may be computationally costly. However, log law of the wall
utilized in the present model requires that the first computational node to be located at least 12
wall length units from the wall. This requirement sets a limit on the systematic refinement study.
Therefore, in all computations, grids were generated such that the first boundary node was located
approximately 30 wall units from the wall. A grid refinement study was conducted for pipe bubbly
flow and confirmed that ““30 wall units” criterion is enough to achieve a grid independent solution
(Troshko, 2000). In all numerical calculations presented below, diffusion terms and pressure were
discretized by the central difference scheme, convective terms were discretized by the first-order
upwind scheme (Hybrid scheme in momentum equation). Since we considered simple flows in the
straight ducts, the flow path was coaligned with the grid lines. Thus, control calculations with
higher-order upwind scheme for convective terms produced negligible change in results, i.e., under
these conditions numerical diffusion was negligible. All calculations presented in the next section
are steady-state solution because preliminary studies showed that time marching technique takes
longer time to get a steady-state solution. Due to a strong interaction between phases, under
relaxation factors in momentum equations were imposed by reducing the factors several times in
comparison to the default values (AEA Technology, 1997). The iterative process was stopped
when the sum of all control volume mass imbalances (integral mass error) of each phase was small
fraction of the phasic inlet mass flow rate. This ensured that iteration non-convergence error was
avoidable.

In all duct flow calculations presented in the next chapter, detailed inlet information was
unavailable. Thus, flat inlet profiles were assumed for all variables. Values of inlet void
fraction were calculated by area averaging of the experimental data. Having known superficial
velocities, the inlet velocities for each phase were calculated. Inlet values of turbulent scalars
were estimated based on hydraulic diameter and 2% liquid turbulence intensity. The outlet
boundary condition assumed fully developed flow, i.e., axial gradients of all variables except
pressure were set to zero. Such outlet condition ensures mass conservation. All obtained
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numerical solutions were checked to make sure that the fully developed solution was indeed
obtained.

6. Validation

Validation of the implemented model was accomplished by comparison of its predictions
against available experimental data. Before validation, the value of the unknown model coefficient
C; had to be estimated. It is relevant to recall, that in the standard k—& model (Launder and
Spalding, 1974), the value of coefficient C, was deduced from fitting model prediction of ho-
mogeneous decaying grid turbulence into experimental data. The value of PrPR was calculated
from the boundary layer analysis as a function of C,, C;, C, and xSP. Yet, the value of C, was
deduced from the comparison of model prediction against free shear flow experiments, i.e., nu-
merically tuned. Since both C; and C; are production term coefficients in ¢ equation, it is rea-
sonable to deduce C; by numerical tuning too. Like in case with C,, the choosing criterion for C;
was the best agreement with experiment.

Bubbly vertical pipe flow experiments by Wang et al. (1987), Serizawa et al. (1975) and Liu
(1998) were chosen for validation. In all experiments, adiabatic, incompressible, air-water bubbly
flows at atmospheric pressure and room temperature were studied. Tables 2—4 lay out the global
flow conditions for each experiment, where J denotes superficial velocity and overbar sign denotes
the flow area average.

As it was shown by Wang et al. (1987), the lateral void distribution is governed by the non-drag
forces and liquid turbulence. The non-drag force coefficients are the major source of uncertainty

Table 2

Global flow conditions of Wang et al. experiment used in validation (I.D. 57.15 mm pipe flow)
Case id J& (m/s) Ji (m/s) (5% d (mm) Flow direction
W0 0.43 0 - -
W1 0.43 0.1 0.132 2.8 Up
w2 0.43 0.27 0.310 3.0 Up
w3 0.43 0.4 0.383 3.2 Up
W4 0.71 0.1 0.145 2.8 Down
W5 0.71 0.27 0.288 3.0 Down
W6 0.71 0.4 0.371 3.2 Down
W7 0.71 0 - - -

# Average inlet void fraction was obtained from fully developed profile integration.

Table 3

Global flow conditions of Serizawa et al. Experiment used in validation (I.D. 60 mm upward pipe flow)
Case id Jin (mis) Ji (m/s) W d (mm)
SO 1.03 0 - -
S1 1.03 0.0753 0.0397 4.0
S2 1.03 0.151 0.1023 4.0

S3 1.03 0.302 0.1627 4.0
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Table 4
Global flow conditions of Liu experiment used in validation (I.D. 57.2 mm upward pipe flow)
Case id J& (mfs) Ji (m/s) D d (mm)
L1 0.5 0.1 0.12 9.87
L2 0.5 0.1 0.13 8.4
L3 0.5 0.1 0.15 4.18
L4 0.5 0.1 0.151 3.19
L5 0.5 0.1 0.151 2.94
L6 1.0 0.1 0.087 6.6
L7 1.0 0.1 0.095 3.7
L8 1.0 0.1 0.106 2.81
L9 1.0 0.4 0.23 13.36
L10 1.0 0.4 0.24 7.09
L11 1.0 0.4 0.25 4.85
Table 5
Non-drag force coefficients
Cl —CLwl CWZ Ctd Cp
Present work 0.06 0.02-0.03 0.04-0.06 0.01-0.03 0
Lopez de Bertodano 0.1 0.2 0.12 0.1 1.0
Morel 0.5 0 0 0.01-0.1 0

in two-fluid formulation. Therefore, before validation of the turbulence model, representative
values of non-drag force coefficients were found by comparison to experimental data of Sato et al.
(1981) (see Troshko (2000) for more details). Table 5 shows the comparison of our values to those
found by Lopez de Bertodano (1992) and Morel (1997). As shown, the values of the coefficients
vary considerably from author to author. Such discrepancy underlines an inherent weakness of
the attempt to represent a complex interfacial momentum transfer by the linear superposition of
several simple forces. For example, Lopez de Bertodano used the interfacial pressure difference
force given by Eq. (15) with C, = 1.0, which was neglected by Morel and us. However, the void
fraction profiles predicted by the present model and the model of Lopez de Bertodano were very
close.

It was also found (Lopez de Bertodano, 1992; Morel, 1997; Troshko, 2000) that for bubble
diameter larger than 5 mm, the lift force becomes much weaker. In fact, C; = 0 seems to be a good
choice for such bubbles, which confirms the experimental trend observed by Moraga et al. (1999).

Experiment W1 of Wang et al. (1987) was used to estimate the model constant C;. The no-
dalization scheme consisted of axisymmetric, uniform grid of 400 (axial direction) by 25 (radial
direction) cells. Axial grid length was 175 pipe diameters. Fig. 1 shows that the void fraction radial
profile was well predicted by our model and model of Lopez de Bertodano (1992), who used
PHOENICS computer program to implement his model. In the figures presented here, x, r and R
denote axial, radial coordinate and pipe radius, respectively. Figs. 2-4 display predicted off-di-
agonal (shear) Reynolds shear stress 7% /pc, liquid velocity and turbulence intensity (7¢/ pc)l/ 2,
Predictions of Lopez de Bertodano (1992) were also included in the figures for comparison.
Measured radial Reynolds shear-stress profile indicates that single-phase turbulence dominated
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Fig. 2. Experiment W1. Reynolds shear-stress comparison, C; = 0.45.

the central half of the pipe, while bubble pseudoturbulence dominated the wall region, causing a
sharp peak in T2 /p. coinciding with the location of the void fraction maximum. According to
our model,
k% dUc
TY = peC—< —— 45

Cxr Pc Iz éc or ( )
in the fully developed regime, as it will be shown later, bubbles diminish velocity gradient.
Therefore, the way our model could account for the increase of 75 is by increasing the turbulent
viscosity associated with interfacial terms in Egs. (32) and (36). Since interfacial term in (32) is
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exact, coefficient C; is the only free parameter quantifying the influence of bubbles on dissipation
rate. Since the interfacial term in (36) is positive, a decrease of C; causes ¢c to decrease, too.
According to (45), it leads to an increase of 7. Therefore, the measured magnitude of Reynolds
shear peak was a calibration parameter to tune the value of C;. It was found that C; =2 0.45
produced a favorable agreement with the data. Our model underpredicted the turbulence level in
the central shear dominated region. Reynolds shear stress predicted by current model was close to
the Lopez de Bertodano’s calculation with bubble-induced eddy diffusivity of Sato et al. (1981).
Calculation of Lopez de Bertodano without additional diffusivity underestimated the bubble-in-
duced turbulence enhancement in the near wall region. Comparison of the liquid velocity profile
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shows that both the present and Lopez de Bertodano’s model correctly predicted the flattening of
liquid velocity caused by the additional bubble induced mixing. Eddy diffusivity hypothesis as-
sumes that the isotropic turbulent velocity scale (turbulence intensity) equal to (2kc/3)"/%. As
shown in Fig. 4, the predicted turbulence intensity was in a good agreement with experiments. The
model of Lopez de Bertodano showed also a reasonable agreement.

Experiments W2 and W3 were used to further check the universality of constant C; = 0.45 for
the higher gas flow rate conditions. The computational grid used in the calculation was similar as
in W1 case. Figs. 5-12 display the results of comparison. The predicted void fraction profiles
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Fig. 6. Experiment W2. Reynolds shear-stress comparison, C; = 0.45.
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Fig. 8. Experiment W2. Comparison of r.m.s. liquid velocity, C; = 0.45.

agreed well with experimental data for both W2 and W3 experiments as shown in Figs. 5 and 9,
respectively. Our model overestimated the stress magnitude in the bubble-dominated region for
W2 case while good agreement was achieved for W3 as shown in Figs. 6 and 10. The model of
Lopez de Bertodano overestimated the near wall shear stress with Sato viscosity. Our model
overpredicted turbulence intensity for W2 and W3 (Figs. 8 and 12). Liquid velocity was well
predicted by both models as illustrated in Figs. 7 and 11.
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Fig. 10. Experiment W3. Reynolds shear-stress comparison, C; = 0.45.

Therefore, the value of 0.45 for the constant C; produced a good quantitative description for
shear turbulence in experiments W1 and W3 and overestimated its effect in experiment W2 by the
factor of 2-2.5. Turbulence intensity was well predicted in W1, and overpredicted in W2 and W3.
Void fraction and liquid velocity profiles were well predicted.

To understand the influence of various production mechanisms of liquid turbulence, the pro-
duction terms in the turbulent energy balance (32) were calculated. Figs. 13 and 14 plot the radial
profiles of the bubble and shear production terms, respectively. As shown in Fig. 13, the bubble-
induced pseudoturbulence term increases with the gas flow rate. Its radial distribution is almost
similar to the void fraction profile. This is because the calculated slip velocity profile was
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essentially uniform. Fig. 14 indicates, that the shear production in cases W1 and W3 is lower than
in the single-phase experiment WO0. This is due to the effect of bubble-induced liquid velocity
flattening. Thus, when bubbles are added to the liquid, the liquid turbulence modification is
governed by two opposing mechanisms. On the one hand turbulence is augmented by the bubble-
induced mixing, on the other hand shear turbulence is suppressed by the liquid velocity gradient
reduction. It is reasonable to assume that at high-liquid flow rate, second (suppression) mecha-
nism may become dominant leading to the bubble-induced turbulence suppression. Such mech-
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Fig. 14. Experiments W1-W3. Predicted mean shear-induced turbulence production rate in (32).

anism of bubble causing turbulence dissipation was explained by Lopez de Bertodano (1992).
Indeed, this phenomenon was observed in experiments conducted by Serizawa et al. (1975) and
Wang et al. (1987). Fig. 15 depicts the eddy diffusivity profile. As the gas flow rate increases, eddy
diffusivity increases and its maximum shifts to the area where bubble-induced mixing is dominant.
Fig. 15 also shows that eddy diffusivity for flow W2 was abnormally high, which led to the
overestimation of turbulent shear stress.

To validate the model’s ability to simulate downward flows, predictions of flows W4-W6
conditions were compared to experiments. Axisymmetric uniform grid consisted of 400 (axial)
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Fig. 16. Experiments W4-W?7. Void fraction comparison.

by 40 (radial) cells was utilized. Axial grid length was 175 pipe diameters. Figs. 16-18 show the
comparison for void fraction, liquid velocity and Reynolds shear stress. In downward flows, the
lift force drives bubbles towards the pipe center (Wang et al., 1987). This results in void fraction
maximum located along the pipe center. Downward flow liquid velocity has a maximum located
off the pipe center. This phenomenon is referred to as “chimney” effect. As shown in Fig. 17,
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Fig. 18. Experiments W4-W7. Reynolds shear-stress comparison.

the predicted magnitude of off center velocity peak agrees with experiment. The existence of
chimney effect in downward flows means that the liquid mean strain rate changes its sign in the
fully developed regime. If eddy diffusivity hypothesis is valid, then Reynolds shear stress should
too change the sign. However, Fig. 18 shows that the Reynolds shear-stress profile does not
change its sign, contrary to predicted behavior. This means that Boussinesq hypothesis utilizing
positive eddy diffusivity may not be valid to describe the turbulent field when chimney effect is
present. More advanced turbulence models such as ASM or full Reynolds closure should be
utilized.

The model was also checked against experiments S1-S3 of Serizawa et al. (1975). Axisymmetric
uniform grid consisted of 400 (axial) by 40 (radial) cells was used in the computation. The axial
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grid length was 83 pipe diameters. Figs. 19-21 display the void fraction comparison. As shown, a
good agreement was achieved for the void fraction profiles in all conditions of the experiment.
Predicted S1 liquid velocity profile, plotted in Fig. 22, exhibited chimney effect contrary to the
experiment. Predicted S2 and S3 profiles exhibited typical flattened shape. Predicted bubble ve-
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Fig. 20. Experiment S2. Void fraction comparison.
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Fig. 22. Experiments S0-S3. Liquid velocity normalized by central line value.

locity profiles, shown in Fig. 23, had the same shape as its liquid counterparts due to the drag
dominance. Figs. 24-26 display comparisons for the turbulence intensity. In experiments S1-S3
the shear-induced turbulence level was higher than in W1-W3 of Wang. This led to the bubble-
induced turbulence suppression in S1 and S2 as evident from Figs. 24 and 25. Our model also
predicted this effect for S1, while it slightly overestimated the turbulent scale for S2 and S3. Fig. 27
displays the slip velocity profile comparison. As shown, slip velocity exhibits maximum at the pipe
center with significant reduction towards the wall. This is in contrary to the calculated profile,
which is fairly uniform except small decline in the wall vicinity. Such behavior is more
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Fig. 24. Experiment S1. Comparison of r.m.s. liquid velocity.

characteristic for flows with non-uniform bubble size distribution. In fact, Serizawa et al. (1975)
found that in all their experiments the bubble equivalent diameter had a normal distribution
between 3.5 and 4 mm.

Experiments L1-L11 of Liu (1998) were used to validate the two-phase wall law (Troshko and
Hassan, 2001). Liu found that bubbles with diameters larger than 5 mm exhibited the centerline
peaked void fraction profile. Therefore, o, =2 0 in Eq. (41) for such flows result into the single-
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Fig. 26. Experiment S3. Comparison of r.m.s. liquid velocity.

phase wall law. For such experiments, the lift force was neglected and single-phase wall law was
used. For flows with smaller, wall bound, bubbles, two calculations were performed: one with the
conventional single-phase wall law and the other with the two-phase wall law. If the two-phase
wall law was used, o,y in (41) was obtained from the experiment. For experiments L1-L5 cor-
rection factor of C;, = 1.17 was used. This value was deduced from the experiments of Sato et al.
(1981) by Troshko (2000). No correction (C, = 1.0) was used for L6-L11 experiments. In ex-
periments L1-L5, an axisymmetric uniform grid consisted of 400 (axial) by 15 (radial direction)
cells was utilized. Axial grid length was 88 pipe diameters. Figs. 28-30 show the comparison of
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Fig. 28. Experiments L1-L5. Wall shear-stress comparison, C, = 1.17.

predicted and experimental wall shear stress vs. bubble diameter. Eq. (41) indicates that the
bubble-induced correction to the single-phase wall law is decreasing as the liquid flow rate is rising
and the boundary layer void fraction decreasing. Thus, the largest difference between the single
and two-phase wall law would be for the small bubble experiments L3-L5. Fig. 28 confirms this
finding. As shown, the small bubble calculations with two-phase wall law predictions were in a
better agreement with experiment. The model was also able to predict the effect of the wall friction
reduction as the bubble size increases. As the bubble diameter gets bigger, the void fraction
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Fig. 30. Experiments L9-L11. Wall shear-stress comparison, C, = 1.

maximum shifts further from the wall. This shift causes the boundary layer liquid velocity gra-
dient in to decrease resulting in the friction reduction.

The ability of the model to predict the bubble size effect is illustrated in Figs. 31-34. As shown,
the predicted void profiles in the near wall region agreed well to experiment for the small bubbles
(2.81 and 3.7 mm). Void fraction in the core region was underpredicted. Such disagreement does
not seem to be due to the bubble size non-uniformity because Fig. 34 shows that small bubbles
had almost uniform size. Other reason might be that the flow was not fully developed because
measured small bubble void profile did not exhibit axial symmetry as shown in Fig. 31. Predicted
large bubble (6.6 mm) void profile was in reasonable agreement with experiment in the core
region. However, in the near wall region, void fraction was underpredicted. In this case,
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Fig. 32. Experiments L6-LS8. Liquid velocity comparison.

disagreement seems to be due mainly to the bubble size non-uniformity because smaller size
bubble dominated the wall vicinity as illustrated in Fig. 34. The model correctly predicted the
same liquid velocity profile for 2.81 and 3.7 mm bubbles. Prediction for 6.6 mm bubble profile
exhibited a laminar-like shape. Here, the difference between calculation and experiment can be
attributed to the presence of small bubbles and its velocity flattening effect in the boundary layer.
The model could not account for this effect. Fig. 34 provides also a good indication to the bubble-
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Fig. 34. Experiments L6-L8. Measured bubble diameter distribution, Liu (1998).

induced turbulence modification in liquid as discussed earlier. Small 2.81 mm bubbles suppressed
turbulence by the mean strain rate reduction, while 3.7 and 6.6 mm bubbles produced enough
mixing to promote turbulence. The model correctly predicted turbulence suppression due to the
presence of 2.71 mm bubbles. However, it failed to predict turbulence promotion by 3.7 mm
bubbles. It also correctly predicted the turbulence maximum shift from the wall vicinity to the free
stream for 6.6 mm bubbles although turbulence intensity was underestimated.
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Table 6

Global flow conditions of Lopez de Bertodano experiment used in validation (upward flow in triangular duct)
Case id J& (m/s) Ji (m/s) D d (mm)
BO 1.0 0 - -
Bl 1.0 0.1 0.077 5.0

Vertical triangular duct experiment by Lopez de Bertodano (1992) was simulated to validate
our model’s performance in 3D case. Adiabatic, air-water fully developed bubbly flow at at-
mospheric pressure and room temperature was studied. Table 6 lays out the global flow condi-
tions of the experiment. The cross-section of the duct was an isosceles triangle with 50 mm base
and 100 mm height. The distance from the inlet to the measurement station was 73 hydraulic
diameters ensuring fully developed flow.

The multi-block capability of CFX4.2 was used to create a 3D grid. The grid was 150 hydraulic
diameters long. It had 200 cells in the axial direction and 300 cells in each lateral cross-section.
The cells near triangle apex were skewed. Thus, computational results in this region may contain
numerical errors.

Figs. 35-37 show comparisons for void fraction, axial mean velocity, and liquid Reynolds shear
stress, respectively. It is necessary to note that Lopez de Bertodano (1992) used a circular sector to
approximate the triangle cross-section by 400 nodes. The void fraction profile at the central line
indicates that the lift force drove bubbles towards the wall resulting in the void peaks near the
base and the apex walls. As shown in Fig. 35, the predicted void profile had some oscillations,
especially noticeable in the apex region, which may be attributed to the poor grid quality in this
zone. Liquid velocity comparison indicates velocity flattening by the bubbles is similar to the pipe
flow. Lopez de Bertodano’s prediction showed slightly better agreement for velocity predictions.
Both Lopez de Bertodano and our calculation correctly predicted turbulence reduction in the
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Fig. 35. Void fraction comparison, z = 0.
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region near the base wall. Model of Bertodano showed better agreement with the experiment
without bubble-induced turbulence viscosity.

In conclusion, our model with empirical constants deduced from the 2D vertical pipe experi-
ments showed a reasonable agreement with experiment in 3D case. Moreover, it compared well to
the model of Lopez de Bertodano (1992) who employed more computationally expensive ASM
and used finer grid.
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7. Conclusions

In this research, a two-fluid, multi-dimensional model of turbulent bubbly flows was imple-
mented in the CFD computer program and validated against available experimental data and
predictions of the model by Lopez de Bertodano (1992).

To model turbulence in the liquid phase, a two-phase variant of k—¢ model was used. The
formulation of turbulent kinetic energy balance was based on the exact equation governing
transport of total turbulent energy of two-phase mixture. This equation contained single-phase
and interfacial terms. The single-phase terms were modeled via standard single-phase k—¢ closure.
The interfacial term was modeled based on the assumption of low-bubble inertia, which is valid
for most bubbly flows. Physically, the interfacial term accounts for the additional turbulence
production caused by the bubble induced mixing. Another important characteristic of liquid
turbulence is turbulence dissipation rate. Standard k—¢ closure was used to model its single-phase
part. Effect of bubbles on the dissipation rate balance was modeled as the bubble-induced tur-
bulent energy production multiplied by the characteristic frequency of bubble-induced turbulence
dissipation. Based on the work of Lopez de Bertodano (1992) this frequency was estimated by the
bubble residence time rather than time scale of smallest eddies.

A new two-phase wall law (Troshko and Hassan, 2001) was also utilized to serve as
computationally inexpensive boundary condition. The derivation of the law was based on the
assumption of additional turbulent viscosity accounting for bubble mixing in the boundary
layer. The result was a logarithmic law where the law constants were functions of the flow
parameters.

The model contained unknown empirical coefficient C; in the interfacial term of dissipation rate
balance equation (36). This coefficient was numerically tuned by comparison of 2D numerical
predictions against experiment of Wang et al. (1987) where bubble-induced turbulence was sig-
nificant. The magnitude of the bubble-induced near wall peak in the Reynolds stress shear
component served as calibration parameter. Numerical tuning showed, that C; == 0.45 is the best-
fit value. To check the universality of this number, other 2D pipe and 3D triangular duct flows
were simulated. It was shown that C; =2 0.45 produces a good agreement for the Reynolds shear
components. However, the predicted turbulence intensity was higher than experiment. This in-
dicates that estimated value of interfacial turbulence coefficient C3 = 0.45 possesses a certain
generality. It was found that for some downward bubbly flows, the liquid Reynolds stress is not
coaligned with the mean strain rate, so turbulent viscosity model is not applicable to such cases.
The model was also able to capture bubble-induced turbulence suppression. It was shown that,
indeed, this effect is due to the bubble-induced reduction of the mean shear production term in the
turbulent kinetic energy balance relation. Our model also compared favorably with more com-
putationally expensive ASM of Lopez de Bertodano.

Correct prediction of two-phase wall shear stress by mechanistic CFD model is very desirable
since the knowledge of wall friction is important in engineering practice. The two-phase wall law
has shown an improved agreement over conventional single-phase law. The improvement was
especially noticeable for the low-Re number flows with small bubbles within boundary layers. The
model was able to account for the bubble size effect on the wall friction under the same liquid and
gas flow rate conditions.
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In conclusion, our two-phase model of turbulence was found to describe well upward turbulent
bubbly flows in straight ducts. It can serve as a basis for the development of more general models.
The model described above is based on the eddy diffusivity models of turbulence. Such models do
not take into account many important aspects of turbulence such as anisotropy. In gravity
dominated bubbly flows, the instant relative velocity is predominantly aligned with the gravity
vector. Therefore, a chaotic bubble motion will selectively enhance the gravity aligned component
of liquid velocity fluctuation vector as observed by Wang et al. (1987). This may be a reason of
generally poor prediction of turbulence scale by current model. Perhaps next step in this direction
might be derivation of the exact conservation equation for two-phase Reynolds stress. With such
improvements, the resulting model is expected to possess considerable predictive capability for a
wide variety of turbulent gas-liquid dispersed flows.
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